5WR7 image
Deposition Date 2016-11-30
Release Date 2017-12-06
Last Version Date 2024-11-20
Entry Detail
PDB ID:
5WR7
Title:
Crystal structure of Trk-A complexed with a selective inhibitor CH7057288
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.76 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
H 3 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:High affinity nerve growth factor receptor
Gene (Uniprot):NTRK1
Chain IDs:A
Chain Length:304
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
SEP A SER modified residue
Ligand Molecules
Primary Citation
Selective TRK Inhibitor CH7057288 against TRK Fusion-Driven Cancer.
Mol. Cancer Ther. 17 2519 2529 (2018)
PMID: 30242093 DOI: 10.1158/1535-7163.MCT-17-1180

Abstact

Members of the tropomyosin receptor kinase (TRK) family are expressed in their constitutively activated forms as a result of a gene fusion that occurs across a wide variety of cancer types. We have identified CH7057288 as a potent and selective TRK inhibitor that belongs to a novel chemical class. CH7057288 showed selective inhibitory activity against TRKA, TRKB, and TRKC in cell-free kinase assays and suppressed proliferation of TRK fusion-positive cell lines, but not that of TRK-negative cell lines. Strong in vivo tumor growth inhibition was observed in subcutaneously implanted xenograft tumor models of TRK fusion-positive cells. Furthermore, in an intracranial implantation model mimicking brain metastasis, CH7057288 significantly induced tumor regression and improved event-free survival. Recently, resistant mutations in the kinase domain of TRK have been reported in patients who show disease progression after treatment with the TRK inhibitors now under clinical development. Our compound maintained similar levels of in vitro and in vivo activity against one of these resistant mutants as it did to wild-type TRK. An X-ray crystal structure of the TRKA and CH7057288 complex supported the activity against the mutant. In addition, gene expression analysis revealed that CH7057288 suppressed MAPK and E2F pathways as downstream signaling of TRK fusion. Therefore, CH7057288 could be a promising therapeutic agent for TRK fusion-positive cancer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures