5WP3 image
Deposition Date 2017-08-03
Release Date 2017-09-13
Last Version Date 2024-10-16
Entry Detail
PDB ID:
5WP3
Keywords:
Title:
Crystal Structure of EED in complex with EB22
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.55 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Polycomb protein EED
Gene (Uniprot):EED
Chain IDs:A
Chain Length:368
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:EB22
Chain IDs:B
Chain Length:121
Number of Molecules:1
Biological Source:synthetic construct
Ligand Molecules
Primary Citation
First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor.
Proc. Natl. Acad. Sci. U.S.A. 114 10125 10130 (2017)
PMID: 28864533 DOI: 10.1073/pnas.1706907114

Abstact

The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.

Legend

Protein

Chemical

Disease

Primary Citation of related structures