5W13 image
Entry Detail
PDB ID:
5W13
Title:
ADC-7 in complex with boronic acid transition state inhibitor SM23
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2017-06-01
Release Date:
2017-11-29
Method Details:
Experimental Method:
Resolution:
1.95 Å
R-Value Free:
0.24
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Beta-lactamase
Chain IDs:A, B, C, D
Chain Length:361
Number of Molecules:4
Biological Source:Acinetobacter baumannii
Ligand Molecules
Primary Citation
Inhibition of Acinetobacter-Derived Cephalosporinase: Exploring the Carboxylate Recognition Site Using Novel beta-Lactamase Inhibitors.
ACS Infect Dis 4 337 348 (2018)
PMID: 29144725 DOI: 10.1021/acsinfecdis.7b00153

Abstact

Boronic acids are attracting a lot of attention as β-lactamase inhibitors, and in particular, compound S02030 (Ki = 44 nM) proved to be a good lead compound against ADC-7 (Acinetobacter-derived cephalosporinase), one of the most significant resistance determinants in A. baumannii. The atomic structure of the ADC-7/S02030 complex highlighted the importance of critical structural determinants for recognition of the boronic acids. Herein, to elucidate the role in recognition of the R2-carboxylate, which mimics the C3/C4 found in β-lactams, we designed, synthesized, and characterized six derivatives of S02030 (3a). Out of the six compounds, the best inhibitors proved to be those with an explicit negative charge (compounds 3a-c, 3h, and 3j, Ki = 44-115 nM), which is in contrast to the derivatives where the negative charge is omitted, such as the amide derivative 3d (Ki = 224 nM) and the hydroxyamide derivative 3e (Ki = 155 nM). To develop a structural characterization of inhibitor binding in the active site, the X-ray crystal structures of ADC-7 in a complex with compounds 3c, SM23, and EC04 were determined. All three compounds share the same structural features as in S02030 but only differ in the carboxy-R2 side chain, thereby providing the opportunity of exploring the distinct binding mode of the negatively charged R2 side chain. This cephalosporinase demonstrates a high degree of versatility in recognition, employing different residues to directly interact with the carboxylate, thus suggesting the existence of a "carboxylate binding region" rather than a binding site in ADC enzymes. Furthermore, this class of compounds was tested against resistant clinical strains of A. baumannii and are effective at inhibiting bacterial growth in conjunction with a β-lactam antibiotic.

Legend

Protein

Chemical

Disease

Primary Citation of related structures