5VYB image
Deposition Date 2017-05-24
Release Date 2017-07-05
Last Version Date 2024-11-20
Entry Detail
PDB ID:
5VYB
Title:
Structure of the carbohydrate recognition domain of Dectin-2 complexed with a mammalian-type high mannose Man9GlcNAc2 oligosaccharide
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
C 2 2 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:C-type lectin domain family 6 member A
Gene (Uniprot):CLEC6A
Chain IDs:A
Chain Length:147
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Mechanism of pathogen recognition by human dectin-2.
J. Biol. Chem. 292 13402 13414 (2017)
PMID: 28652405 DOI: 10.1074/jbc.M117.799080

Abstact

Dectin-2, a C-type lectin on macrophages and other cells of the innate immune system, functions in response to pathogens, particularly fungi. The carbohydrate-recognition domain (CRD) in dectin-2 is linked to a transmembrane sequence that interacts with the common Fc receptor γ subunit to initiate immune signaling. The molecular mechanism by which dectin-2 selectively binds to pathogens has been investigated by characterizing the CRD expressed in a bacterial system. Competition binding studies indicated that the CRD binds to monosaccharides with modest affinity and that affinity was greatly enhanced for mannose-linked α1-2 or α1-4 to a second mannose residue. Glycan array analysis confirmed selective binding of the CRD to glycans that contain Manα1-2Man epitopes. Crystals of the CRD in complex with a mammalian-type high-mannose Man9GlcNAc2 oligosaccharide exhibited interaction with Manα1-2Man on two different termini of the glycan, with the reducing-end mannose residue ligated to Ca2+ in a primary binding site and the nonreducing terminal mannose residue occupying an adjacent secondary site. Comparison of the binding sites in DC-SIGN and langerin, two other pathogen-binding receptors of the innate immune system, revealed why these two binding sites accommodate only terminal Manα1-2Man structures, whereas dectin-2 can bind Manα1-2Man in internal positions in mannans and other polysaccharides. The specificity and geometry of the dectin-2-binding site provide the molecular mechanism for binding of dectin-2 to fungal mannans and also to bacterial lipopolysaccharides, capsular polysaccharides, and lipoarabinomannans that contain the Manα1-2Man disaccharide unit.

Legend

Protein

Chemical

Disease

Primary Citation of related structures