5VTJ image
Deposition Date 2017-05-17
Release Date 2018-02-21
Last Version Date 2023-11-15
Entry Detail
PDB ID:
5VTJ
Keywords:
Title:
Structure of Pin1 WW Domain Sequence 1 Substituted with [S,S]ACPC
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
1.50 Å
R-Value Free:
0.25
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
P 43 21 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
Gene (Uniprot):PIN1
Chain IDs:A
Chain Length:34
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Evaluation of beta-Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure.
Chembiochem 19 604 612 (2018)
PMID: 29272560 DOI: 10.1002/cbic.201700580

Abstact

β-Amino acids have a backbone that is expanded by one carbon atom relative to α-amino acids, and β residues have been investigated as subunits in protein-like molecules that adopt discrete and predictable conformations. Two classes of β residue have been widely explored in the context of generating α-helix-like conformations: β3 -amino acids, which are homologous to α-amino acids and bear a side chain on the backbone carbon adjacent to nitrogen, and residues constrained by a five-membered ring, such the one derived from trans-2-aminocyclopentanecarboxylic acid (ACPC). Substitution of α residues with their β3  homologues within an α-helix-forming sequence generally causes a decrease in conformational stability. Use of a ring-constrained β residue, however, can offset the destabilizing effect of α→β substitution. Here we extend the study of α→β substitutions, involving both β3 and ACPC residues, to short loops within a small tertiary motif. We start from previously reported variants of the Pin1 WW domain that contain a two-, three-, or four-residue β-hairpin loop, and we evaluate α→β replacements at each loop position for each variant. By referral to the ϕ,ψ angles of the native structure, one can choose a stereochemically appropriate ACPC residue. Use of such logically chosen ACPC residues enhances conformational stability in several cases. Crystal structures of three β-containing Pin1 WW domain variants show that a native-like tertiary structure is maintained in each case.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback