5VR3 image
Deposition Date 2017-05-10
Release Date 2018-02-14
Last Version Date 2024-03-13
Entry Detail
PDB ID:
5VR3
Keywords:
Title:
Crystal structure of the BRS domain of BRAF
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.22
R-Value Work:
0.20
R-Value Observed:
0.21
Space Group:
P 31 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:BRAF
Chain IDs:A
Chain Length:88
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
MEK drives BRAF activation through allosteric control of KSR proteins.
Nature 554 549 553 (2018)
PMID: 29433126 DOI: 10.1038/nature25478

Abstact

RAF family kinases have prominent roles in cancer. Their activation is dependent on dimerization of their kinase domains, which has emerged as a hindrance for drug development. In mammals, RAF family kinases include three catalytically competent enzymes (ARAF, BRAF and CRAF) and two pseudokinases (KSR1 and KSR2) that have been described as scaffolds owing to their apparent ability to bridge RAF isoforms and their substrate, mitogen-activated protein kinase kinase (MEK). Kinase suppressor of Ras (KSR) pseudokinases were also shown to dimerize with kinase-competent RAFs to stimulate catalysis allosterically. Although GTP-bound RAS can modulate the dimerization of RAF isoforms by engaging their RAS-binding domains, KSR1 and KSR2 lack an RAS-binding domain and therefore the regulatory principles underlying their dimerization with other RAF family members remain unknown. Here we show that the selective heterodimerization of BRAF with KSR1 is specified by direct contacts between the amino-terminal regulatory regions of each protein, comprising in part a novel domain called BRS in BRAF and the coiled-coil-sterile α motif (CC-SAM) domain in KSR1. We also discovered that MEK binding to the kinase domain of KSR1 asymmetrically drives BRAF-KSR1 heterodimerization, resulting in the concomitant stimulation of BRAF catalytic activity towards free MEK molecules. These findings demonstrate that KSR-MEK complexes allosterically activate BRAF through the action of N-terminal regulatory region and kinase domain contacts and challenge the accepted role of KSR as a scaffold for MEK recruitment to RAF.

Legend

Protein

Chemical

Disease

Primary Citation of related structures