5UIF image
Deposition Date 2017-01-13
Release Date 2017-11-22
Last Version Date 2023-10-04
Entry Detail
PDB ID:
5UIF
Keywords:
Title:
Crystal Structure of Native Ps01740
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.57 Å
R-Value Free:
0.27
R-Value Work:
0.21
R-Value Observed:
0.22
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Ps01740
Chain IDs:A, B, C
Chain Length:127
Number of Molecules:3
Biological Source:Pseudomonas sp. UW4
Primary Citation
Kinetic and structural characterization of a cis-3-Chloroacrylic acid dehalogenase homologue in Pseudomonas sp. UW4: A potential step between subgroups in the tautomerase superfamily.
Arch. Biochem. Biophys. 636 50 56 (2017)
PMID: 29111295 DOI: 10.1016/j.abb.2017.10.018

Abstact

A Pseudomonas sp. UW4 protein (UniProt K9NIA5) of unknown function was identified as similar to 4-oxalocrotonate tautomerase (4-OT)-like and cis-3-chloroacrylic acid dehalogenase (cis-CaaD)-like subgroups of the tautomerase superfamily (TSF). This protein lacks only Tyr-103 of the amino acids critical for cis-CaaD activity (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, Glu-114). As it may represent an important variant of these enzymes, its kinetic and structural properties have been determined. The protein shows tautomerase activity with phenylenolpyruvate, but lacks native 4-OT activity and dehalogenase activity with the isomers of 3-chloroacrylic acid. It shows mostly low-level hydratase activity at pH 7.0, converting 2-oxo-3-pentynoate to acetopyruvate, consistent with cis-CaaD-like behavior. At pH 9.0, this compound results primarily in covalent modification of Pro-1, which is consistent with 4-OT-like behavior. These observations could reflect a pKa for Pro-1 that is closer to that of cis-CaaD (∼9.2) than to 4-OT (∼6.4). A structure of the native enzyme, at 2.6 Å resolution, highlights differences at the active site from those of 4-OT and cis-CaaD that add to our understanding of how contemporary TSF reactions and mechanisms may have diverged from a common 4-OT-like ancestor.

Legend

Protein

Chemical

Disease

Primary Citation of related structures