5UB9 image
Entry Detail
PDB ID:
5UB9
Keywords:
Title:
Catalytic core domain of Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2016-12-20
Release Date:
2017-12-20
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:ATP phosphoribosyltransferase
Chain IDs:A, B
Chain Length:226
Number of Molecules:2
Biological Source:Campylobacter jejuni (strain RM1221)
Primary Citation
A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase.
Biochem. J. 475 247 260 (2018)
PMID: 29208762 DOI: 10.1042/BCJ20170762

Abstact

Adenosine triphosphate (ATP) phosphoribosyltransferase (ATP-PRT) catalyses the first committed step of histidine biosynthesis in plants and microorganisms. Two forms of ATP-PRT have been reported, which differ in their molecular architecture and mechanism of allosteric regulation. The short-form ATP-PRT is a hetero-octamer, with four HisG chains that comprise only the catalytic domains and four separate chains of HisZ required for allosteric regulation by histidine. The long-form ATP-PRT is homo-hexameric, with each chain comprising two catalytic domains and a covalently linked regulatory domain that binds histidine as an allosteric inhibitor. Here, we describe a truncated long-form ATP-PRT from Campylobacter jejuni devoid of its regulatory domain (CjeATP-PRTcore). Results showed that CjeATP-PRTcore is dimeric, exhibits attenuated catalytic activity, and is insensitive to histidine, indicating that the covalently linked regulatory domain plays a role in both catalysis and regulation. Crystal structures were obtained for CjeATP-PRTcore in complex with both substrates, and for the first time, the complete product of the reaction. These structures reveal the key features of the active site and provide insights into how substrates move into position during catalysis.

Legend

Protein

Chemical

Disease

Primary Citation of related structures