5U1A image
Deposition Date 2016-11-28
Release Date 2017-10-11
Last Version Date 2023-10-04
Entry Detail
PDB ID:
5U1A
Keywords:
Title:
Ferritin with Gc MtrE loop 1 inserted at His34
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.19
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 4
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Ferritin,MtrE protein chimera
Gene (Uniprot):mtrE
Chain IDs:A, B, C, D, E, F, G, H, I, J, K, L
Chain Length:182
Number of Molecules:12
Biological Source:Helicobacter pylori, Neisseria gonorrhoeae
Primary Citation
Structure-based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae.
FEBS Open Bio 7 1196 1207 (2017)
PMID: 28781959 DOI: 10.1002/2211-5463.12267

Abstact

Effective vaccines are urgently needed to combat gonorrhea, a common sexually transmitted bacterial infection, for which treatment options are diminishing due to rapid emergence of antibiotic resistance. We have used a rational approach to the development of gonorrhea vaccines, and genetically engineered nanoparticles to present antigenic peptides of Neisseria gonorrhoeae, the causative agent of gonorrhea. We hypothesized that the ferritin nanocage could be used as a platform to display an ordered array of N. gonorrhoeae antigenic peptides on its surface. MtrE, the outer membrane channel of the highly conserved gonococcal MtrCDE active efflux pump, is an attractive vaccine target due to its importance in protecting N. gonorrhoeae from host innate effectors and antibiotic resistance. Using computational approaches, we designed constructs that expressed chimeric proteins of the Helicobacter pylori ferritin and antigenic peptides that correspond to the two surface-exposed loops of N. gonorrhoeae MtrE. The peptides were inserted at the N terminus or in a surface-exposed ferritin loop between helices αA and αB. Crystal structures of the chimeric proteins revealed that the proteins assembled correctly into a 24-mer nanocage structure. Although the inserted N. gonorrhoeae peptides were disordered, it was clear that they were displayed on the nanocage surface, but with multiple conformations. Our results confirmed that the ferritin nanoparticle is a robust platform to present antigenic peptides and therefore an ideal system for rational design of immunogens.

Legend

Protein

Chemical

Disease

Primary Citation of related structures