5T88 image
Entry Detail
PDB ID:
5T88
Keywords:
Title:
Prolyl oligopeptidase from Pyrococcus furiosus
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2016-09-06
Release Date:
2017-09-06
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Prolyl endopeptidase
Chain IDs:A, B
Chain Length:616
Number of Molecules:2
Biological Source:Pyrococcus furiosus
Primary Citation
Crystal Structure and Conformational Dynamics of Pyrococcus furiosus Prolyl Oligopeptidase.
Biochemistry 58 1616 1626 (2019)
PMID: 30786206 DOI: 10.1021/acs.biochem.9b00031

Abstact

Enzymes in the prolyl oligopeptidase family possess unique structures and substrate specificities that are important for their biological activity and for potential biocatalytic applications. The crystal structures of Pyrococcus furiosus (Pfu) prolyl oligopeptidase (POP) and the corresponding S477C mutant were determined to 1.9 and 2.2 Å resolution, respectively. The wild type enzyme crystallized in an open conformation, indicating that this state is readily accessible, and it contained bound chloride ions and a prolylproline ligand. These structures were used as starting points for molecular dynamics simulations of Pfu POP conformational dynamics. The simulations showed that large-scale domain opening and closing occurred spontaneously, providing facile substrate access to the active site. Movement of the loop containing the catalytically essential histidine into a conformation similar to those found in structures with fully formed catalytic triads also occurred. This movement was modulated by chloride binding, providing a rationale for experimentally observed activation of POP peptidase catalysis by chloride. Thus, the structures and simulations reported in this study, combined with existing biochemical data, provide a number of insights into POP catalysis.

Legend

Protein

Chemical

Disease

Primary Citation of related structures