5QJ0 image
Entry Detail
PDB ID:
5QJ0
Title:
CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS GENOTYPE 2A STRAIN JFH1 NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 6-[ethyl(methylsulfonyl)amino]-2-(4-fluorophenyl)-N-methyl-5-(3-{[1-(pyrimidin-2-yl)cyclopropyl]carbamoyl}phenyl)-1-benzofuran-3-carboxamide
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2018-08-13
Release Date:
2018-11-21
Method Details:
Experimental Method:
Resolution:
2.08 Å
R-Value Free:
0.21
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:RNA-dependent RNA polymerase
Mutations:L30S
Chain IDs:A
Chain Length:574
Number of Molecules:1
Biological Source:Hepacivirus C
Primary Citation
Structure-Property Basis for Solving Transporter-Mediated Efflux and Pan-Genotypic Inhibition in HCV NS5B Inhibitors.
ACS Med Chem Lett 9 1217 1222 (2018)
PMID: 30613329 DOI: 10.1021/acsmedchemlett.8b00379

Abstact

In solving the P-gp and BCRP transporter-mediated efflux issue in a series of benzofuran-derived pan-genotypic palm site inhibitors of the hepatitis C virus NS5B replicase, it was found that close attention to physicochemical properties was essential. In these compounds, where both molecular weight (MW >579) and TPSA (>110 Å2) were high, attenuation of polar surface area together with weakening of hydrogen bond acceptor strength of the molecule provided a higher intrinsic membrane permeability and more desirable Caco-2 parameters, as demonstrated by trifluoroacetamide 11 and the benchmark N-ethylamino analog 12. In addition, the tendency of these inhibitors to form intramolecular hydrogen bonds potentially contributes favorably to the improved membrane permeability and absorption. The functional group minimization that resolved the efflux problem simultaneously maintained potent inhibitory activity toward a gt-2 HCV replicon due to a switching of the role of substituents in interacting with the Gln414 binding pocket, as observed in gt-2a NS5B/inhibitor complex cocrystal structures, thus increasing the efficiency of the optimization. Noteworthy, a novel intermolecular S=O···C=O n → π* type interaction between the ligand sulfonamide oxygen atom and the carbonyl moiety of the side chain of Gln414 was observed. The insights from these structure-property studies and crystallography information provided a direction for optimization in a campaign to identify second generation pan-genotypic NS5B inhibitors.

Legend

Protein

Chemical

Disease

Primary Citation of related structures