5N62 image
Entry Detail
PDB ID:
5N62
Title:
Human TTR crystals soaked in manganese chloride.
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2017-02-14
Release Date:
2018-03-07
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Transthyretin
Chain IDs:A, B
Chain Length:117
Number of Molecules:2
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Copper mediated amyloid-beta binding to Transthyretin.
Sci Rep 8 13744 13744 (2018)
PMID: 30213975 DOI: 10.1038/s41598-018-31808-5

Abstact

Transthyretin (TTR), a homotetrameric protein that transports thyroxine and retinol both in plasma and in cerebrospinal (CSF) fluid provides a natural protective response against Alzheimer's disease (AD), modulates amyloid-β (Aβ) deposition by direct interaction and co-localizes with Aβ in plaques. TTR levels are lower in the CSF of AD patients. Zn2+, Mn2+ and Fe2+ transform TTR into a protease able to cleave Aβ. To explain these activities, monomer dissociation or conformational changes have been suggested. Here, we report that when TTR crystals are exposed to copper or iron salts, the tetramer undergoes a significant conformational change that alters the dimer-dimer interface and rearranges residues implicated in TTR's ability to neutralize Aβ. We also describe the conformational changes in TTR upon the binding of the various metal ions. Furthermore, using bio-layer interferometry (BLI) with immobilized Aβ(1-28), we observe the binding of TTR only in the presence of copper. Such Cu2+-dependent binding suggests a recognition mechanism whereby Cu2+ modulates both the TTR conformation, induces a complementary Aβ structure and may participate in the interaction. Cu2+-soaked TTR crystals show a conformation different from that induced by Fe2+, and intriguingly, TTR crystals grown in presence of Aβ(1-28) show different positions for the copper sites from those grown its absence.

Legend

Protein

Chemical

Disease

Primary Citation of related structures