5MIL image
Entry Detail
PDB ID:
5MIL
Keywords:
Title:
Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity islands transfer.
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2016-11-28
Release Date:
2017-09-06
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.24
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:DUTPase family protein
Chain IDs:A, B
Chain Length:202
Number of Molecules:2
Biological Source:Staphylococcus aureus
Primary Citation
Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer.
Elife 6 ? ? (2017)
PMID: 28826473 DOI: 10.7554/eLife.26487

Abstact

Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature's most fascinating subcellular parasites.

Legend

Protein

Chemical

Disease

Primary Citation of related structures