5LGU image
Entry Detail
PDB ID:
5LGU
Keywords:
Title:
Thieno[3,2-b]pyrrole-5-carboxamides as Novel Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1: Compound 34
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2016-07-08
Release Date:
2017-02-22
Method Details:
Experimental Method:
Resolution:
3.20 Å
R-Value Free:
0.20
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Lysine-specific histone demethylase 1A
Chain IDs:A
Chain Length:730
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Description:REST corepressor 1
Chain IDs:B
Chain Length:178
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 2: Structure-Based Drug Design and Structure-Activity Relationship.
J. Med. Chem. 60 1693 1715 (2017)
PMID: 28186757 DOI: 10.1021/acs.jmedchem.6b01019

Abstact

The balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described (Part 1, DOI 10.1021.acs.jmedchem.6b01018) the identification of thieno[3,2-b]pyrrole-5-carboxamides as novel reversible inhibitors of KDM1A, whose preliminary exploration resulted in compound 2 with biochemical IC50 = 160 nM. We now report the structure-guided optimization of this chemical series based on multiple ligand/KDM1A-CoRest cocrystal structures, which led to several extremely potent inhibitors. In particular, compounds 46, 49, and 50 showed single-digit nanomolar IC50 values for in vitro inhibition of KDM1A, with high selectivity in secondary assays. In THP-1 cells, these compounds transcriptionally affected the expression of genes regulated by KDM1A such as CD14, CD11b, and CD86. Moreover, 49 and 50 showed a remarkable anticlonogenic cell growth effect on MLL-AF9 human leukemia cells.

Legend

Protein

Chemical

Disease

Primary Citation of related structures