5J7C image
Entry Detail
PDB ID:
5J7C
Title:
A picomolar affinity FN3 domain in complex with hen egg-white lysozyme
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2016-04-06
Release Date:
2016-08-17
Method Details:
Experimental Method:
Resolution:
2.54 Å
R-Value Free:
0.24
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Lysozyme C
Chain IDs:A, B
Chain Length:129
Number of Molecules:2
Biological Source:Gallus gallus
Polymer Type:polypeptide(L)
Description:FNfn10-anti-lysozyme (DE0.4.1)
Chain IDs:C, D
Chain Length:102
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Circumventing the stability-function trade-off in an engineered FN3 domain.
Protein Eng.Des.Sel. ? ? ? (2016)
PMID: 27578887 DOI: 10.1093/protein/gzw046

Abstact

The favorable biophysical attributes of non-antibody scaffolds make them attractive alternatives to monoclonal antibodies. However, due to the well-known stability-function trade-off, these gains tend to be marginal after functional selection. A notable example is the fibronectin Type III (FN3) domain, FNfn10, which has been previously evolved to bind lysozyme with 1 pM affinity (FNfn10-α-lys), but suffers from poor thermodynamic and kinetic stability. To explore this stability-function compromise further, we grafted the lysozyme-binding loops from FNfn10-α-lys onto our previously engineered, ultra-stable FN3 scaffold, FN3con. The resulting variant (FN3con-α-lys) bound lysozyme with a markedly reduced affinity, but retained high levels of thermal stability. The crystal structure of FNfn10-α-lys in complex with lysozyme revealed unanticipated interactions at the protein-protein interface involving framework residues of FNfn10-α-lys, thus explaining the failure to transfer binding via loop grafting. Utilizing this structural information, we redesigned FN3con-α-lys and restored picomolar binding affinity to lysozyme, while maintaining thermodynamic stability (with a thermal melting temperature 2-fold higher than that of FNfn10-α-lys). FN3con therefore provides an exceptional window of stability to tolerate deleterious mutations, resulting in a substantial advantage for functional design. This study emphasizes the utility of consensus design for the generation of highly stable scaffolds for downstream protein engineering studies.

Legend

Protein

Chemical

Disease

Primary Citation of related structures