5I1R image
Deposition Date 2016-02-05
Release Date 2016-03-30
Last Version Date 2024-05-15
Entry Detail
PDB ID:
5I1R
Keywords:
Title:
Quantitative characterization of configurational space sampled by HIV-1 nucleocapsid using solution NMR and X-ray scattering
Biological Source:
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
21
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Nucleocapsid protein p7
Gene (Uniprot):gag
Chain IDs:A
Chain Length:55
Number of Molecules:1
Biological Source:Human immunodeficiency virus type 1 (HXB2 ISOLATE)
Ligand Molecules
Primary Citation
Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.
Chemphyschem 17 1548 1552 (2016)
PMID: 26946052 DOI: 10.1002/cphc.201600212

Abstact

Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function.

Legend

Protein

Chemical

Disease

Primary Citation of related structures