5GMD image
Entry Detail
PDB ID:
5GMD
Keywords:
Title:
Crystal structure of Sulfolobus solfataricus diphosphomevalonate decarboxylase in complex with ATP-gamma-S
Biological Source:
PDB Version:
Deposition Date:
2016-07-13
Release Date:
2016-12-28
Method Details:
Experimental Method:
Resolution:
1.50 Å
R-Value Free:
0.19
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
H 3 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Diphosphomevalonate decarboxylase
Chain IDs:A
Chain Length:325
Number of Molecules:1
Biological Source:Sulfolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2)
Primary Citation
A Single Amino Acid Mutation Converts (R)-5-Diphosphomevalonate Decarboxylase into a Kinase
J. Biol. Chem. 292 2457 2469 (2017)
PMID: 28003359 DOI: 10.1074/jbc.M116.752535

Abstact

The biosynthesis of isopentenyl diphosphate, a fundamental precursor for isoprenoids, via the mevalonate pathway is completed by diphosphomevalonate decarboxylase. This enzyme catalyzes the formation of isopentenyl diphosphate through the ATP-dependent phosphorylation of the 3-hydroxyl group of (R)-5-diphosphomevalonate followed by decarboxylation coupled with the elimination of the 3-phosphate group. In this reaction, a conserved aspartate residue has been proposed to be involved in the phosphorylation step as the general base catalyst that abstracts a proton from the 3-hydroxyl group. In this study, the catalytic mechanism of this rare type of decarboxylase is re-investigated by structural and mutagenic studies on the enzyme from a thermoacidophilic archaeon Sulfolobus solfataricus The crystal structures of the archaeal enzyme in complex with (R)-5-diphosphomevalonate and adenosine 5'-O-(3-thio)triphosphate or with (R)-5-diphosphomevalonate and ADP are newly solved, and theoretical analysis based on the structure suggests the inability of proton abstraction by the conserved aspartate residue, Asp-281. Site-directed mutagenesis on Asp-281 creates mutants that only show diphosphomevalonate 3-kinase activity, demonstrating that the residue is required in the process of phosphate elimination/decarboxylation, rather than in the preceding phosphorylation step. These results enable discussion of the catalytic roles of the aspartate residue and provide clear proof of the involvement of a long predicted intermediate, (R)-3-phospho-5-diphosphomevalonate, in the reaction of the enzyme.

Legend

Protein

Chemical

Disease

Primary Citation of related structures