5C5H image
Deposition Date 2015-06-19
Release Date 2015-10-07
Last Version Date 2023-09-27
Entry Detail
PDB ID:
5C5H
Keywords:
Title:
R195K E. coli MenE with bound OSB-AMS
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 31 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:2-succinylbenzoate--CoA ligase
Gene (Uniprot):menE
Mutagens:R195K
Chain IDs:A, B
Chain Length:453
Number of Molecules:2
Biological Source:Escherichia coli (strain K12)
Primary Citation
Mechanism of MenE Inhibition by Acyl-Adenylate Analogues and Discovery of Novel Antibacterial Agents.
Biochemistry 54 6514 6524 (2015)
PMID: 26394156 DOI: 10.1021/acs.biochem.5b00966

Abstact

MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

Legend

Protein

Chemical

Disease

Primary Citation of related structures