5C2K image
Entry Detail
PDB ID:
5C2K
Title:
Crystal structure of the fusion protein linked by RhoA and the GAP domain of MgcRacGAP
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2015-06-16
Release Date:
2016-06-22
Method Details:
Experimental Method:
Resolution:
1.42 Å
R-Value Free:
0.20
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Transforming protein RhoA,Rac GTPase-activating protein 1
Mutations:S249D
Chain IDs:A
Chain Length:415
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Structural basis for the effects of Ser387 phosphorylation of MgcRacGAP on its GTPase-activating activities for CDC42 and RHOA.
J.Struct.Biol. 216 108151 108151 (2024)
PMID: 39522789 DOI: 10.1016/j.jsb.2024.108151

Abstact

MgcRacGAP is a GTPase-activating protein (GAP) for the Rho family GTPases. During cytokinesis, MgcRacGAP localizes to the midbody, where it activates the GTPase activity of Rho family GTPases to facilitate cytokinesis. In the midbody, Aurora B phosphorylates Ser387 within the GAP domain of human MgcRacGAP, a modification that is suggested to influence GTPase preference. However, there are conflicting reports, with some studies indicating that Ser387 phosphorylation does not alter the GTPase preference of MgcRacGAP. This controversy highlights the need for a deeper understanding of the molecular interactions involved, which can be clarified through structural analyses. In the present study, we determined the crystal structures of the wild-type MgcRacGAP GAP domain complexed with CDC42•GDP•AlF4- and the S378D phosphomimetic mutant GAP domain fused with RHOA•GDP•AlF4-. Additionally, crystal structures of the GAP domains were determined for the S387D and S387A mutants. Our analysis revealed that neither GTPase binding nor S387D mutation affected the overall structure of the GAP domain. However, comparison of the CDC42•MgcRacGAP (wild-type) complex with the RHOA-MgcRacGAP(S378D) fusion protein structure indicated that the S387D mutation caused positional shifts in both CDC42 and RHOA relative to MgcRacGAP. These shifts reduced interactions with CDC42 more severely than those with RHOA. In fact, the S387D mutation decreased the GTPase-activating activity of MgcRacGAP toward CDC42, while its impact on RHOA was only moderate. This difference in the rate of activity reduction may play an important role in GTPase preference.

Legend

Protein

Chemical

Disease

Primary Citation of related structures