5BUM image
Deposition Date 2015-06-04
Release Date 2016-06-08
Last Version Date 2024-11-13
Entry Detail
PDB ID:
5BUM
Title:
Crystal Structure of LysM domain from Equisetum arvense chitinase A
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.50 Å
R-Value Free:
0.28
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 31 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Chitinase A
Gene (Uniprot):eachiA
Chain IDs:A, B
Chain Length:50
Number of Molecules:2
Biological Source:Equisetum arvense
Ligand Molecules
Primary Citation
Structure, mechanism, and phylogeny of LysM-chitinase conjugates specifically found in fern plants.
Plant Sci. 321 111310 111310 (2022)
PMID: 35696910 DOI: 10.1016/j.plantsci.2022.111310

Abstact

A unique GH18 chitinase containing two N-terminal lysin motifs (PrLysM1 and PrLysM2) was first found in fern, Pteris ryukyuensis (Onaga and Taira, Glycobiology, 18, 414-423, 2008). This type of LysM-chitinase conjugates is not usually found in plants but in fungi. Here, we produced a similar GH18 chitinase with one N-terminal LysM module (EaLysM) from the fern, Equisetum arvense (EaChiA, Inamine et al., Biosci. Biotechnol. Biochem., 79, 1296-1304, 2015), using an Escherichia coli expression system and characterized for its structure and mechanism of action. The crystal structure of EaLysM exhibited an almost identical fold (βααβ) to that of PrLysM2. From isothermal titration calorimetry and nuclear magnetic resonance, the binding mode and affinities of EaLysM for chitooligosaccharides (GlcNAc)n (3, 4, 5, and 6) were found to be comparable to those of PrLysM2. The LysM module in EaChiA is likely to bind (GlcNAc)n almost independently through CH-π stacking of a Tyr residue with the pyranose ring. The (GlcNAc)n-binding mode of LysMs in the LysM-chitinase conjugates from fern plants appears to differ from that of plant LysMs acting in chitin- or Nod-signal perception, in which multiple LysMs cooperatively act on (GlcNAc)n. Phylogenetic analysis suggested that LysM-GH18 conjugates of fern plants formed a monophyletic group and had been separated earlier than forming the clade of fungal chitinases with LysMs.

Legend

Protein

Chemical

Disease

Primary Citation of related structures