5BQ1 image
Deposition Date 2015-05-28
Release Date 2015-10-28
Last Version Date 2024-03-06
Entry Detail
PDB ID:
5BQ1
Keywords:
Title:
Capturing Carbon Dioxide in beta Carbonic Anhydrase
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.19
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
I 2 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Carbonic anhydrase
Chain IDs:A
Chain Length:209
Number of Molecules:1
Biological Source:Pseudomonas aeruginosa
Primary Citation
Carbon Dioxide "Trapped" in a beta-Carbonic Anhydrase.
Biochemistry 54 6631 6638 (2015)
PMID: 26457866 DOI: 10.1021/acs.biochem.5b00987

Abstact

Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with R(cryst) and R(free) values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.

Legend

Protein

Chemical

Disease

Primary Citation of related structures