5A8Z image
Entry Detail
PDB ID:
5A8Z
Keywords:
Title:
Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2015-07-17
Release Date:
2016-08-03
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.23
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
P 63
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Neutrophil elastase
Chain IDs:A
Chain Length:218
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Potent and Selective Human Neutrophil Elastase Inhibitors with Novel Equatorial Ring Topology: in vivo Efficacy of the Polar Pyrimidopyridazine BAY-8040 in a Pulmonary Arterial Hypertension Rat Model.
ChemMedChem 11 199 206 (2016)
PMID: 26333652 DOI: 10.1002/cmdc.201500269

Abstact

Human neutrophil elastase (HNE) is a key driver of inflammation in many cardiopulmonary and systemic inflammatory and autoimmune conditions. Overshooting high HNE activity is the consequence of a disrupted protease-antiprotease balance. Accordingly, there has been an intensive search for potent and selective HNE inhibitors with suitable pharmacokinetics that would allowing oral administration in patients. Based on the chemical probe BAY-678 and the clinical candidate BAY 85-8501 we explored further ring topologies along the equator of the parent pyrimidinone lead series. Novel ring systems were annulated in the east, yielding imidazolo-, triazolo-, and tetrazolopyrimidines in order to ensure additional inhibitor-HNE contacts beyond the S1 and the S2 pocket of HNE. The western annulation of pyridazines led to the polar pyrimidopyridazine BAY-8040, which combines excellent potency and selectivity with a promising pharmacokinetic profile. In vivo efficacy with regard to decreasing cardiac remodeling and amelioration of cardiac function was shown in a monocrotaline-induced rat model for pulmonary arterial hypertension. This demonstrated in vivo proof of concept in animals.

Legend

Protein

Chemical

Disease

Primary Citation of related structures