5A39 image
Entry Detail
PDB ID:
5A39
Keywords:
Title:
Structure of Rad14 in complex with cisplatin containing DNA
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2015-05-28
Release Date:
2015-06-24
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.25
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 41
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:DNA REPAIR PROTEIN RAD14
Chain IDs:A, B
Chain Length:115
Number of Molecules:2
Biological Source:SACCHAROMYCES CEREVISIAE
Polymer Type:polydeoxyribonucleotide
Description:DNA
Chain IDs:C, D
Chain Length:15
Number of Molecules:2
Biological Source:SACCHAROMYCES CEREVISIAE
Polymer Type:polydeoxyribonucleotide
Description:5'-D(*DTP*GP*AP*TP*GP*AP*CP*CP*GP*TP*AP*GP*AP)-3'
Chain IDs:E, F
Chain Length:13
Number of Molecules:2
Biological Source:SACCHAROMYCES CEREVISIAE
Polymer Type:polydeoxyribonucleotide
Description:5'-D(*DGP*AP*TP*GP*AP*CP*CP*GP*TP*AP*GP*AP*GP)-3'
Chain IDs:G, H
Chain Length:13
Number of Molecules:2
Biological Source:SACCHAROMYCES CEREVISIAE
Primary Citation
Structural Insights Into the Recognition of Cisplatin and Aaf-Dg Lesion by Rad14 (Xpa).
Proc.Natl.Acad.Sci.USA 112 8272 ? (2015)
PMID: 26100901 DOI: 10.1073/PNAS.1508509112

Abstact

Nucleotide excision repair (NER) is responsible for the removal of a large variety of structurally diverse DNA lesions. Mutations of the involved proteins cause the xeroderma pigmentosum (XP) cancer predisposition syndrome. Although the general mechanism of the NER process is well studied, the function of the XPA protein, which is of central importance for successful NER, has remained enigmatic. It is known, that XPA binds kinked DNA structures and that it interacts also with DNA duplexes containing certain lesions, but the mechanism of interactions is unknown. Here we present two crystal structures of the DNA binding domain (DBD) of the yeast XPA homolog Rad14 bound to DNA with either a cisplatin lesion (1,2-GG) or an acetylaminofluorene adduct (AAF-dG). In the structures, we see that two Rad14 molecules bind to the duplex, which induces DNA melting of the duplex remote from the lesion. Each monomer interrogates the duplex with a β-hairpin, which creates a 13mer duplex recognition motif additionally characterized by a sharp 70° DNA kink at the position of the lesion. Although the 1,2-GG lesion stabilizes the kink due to the covalent fixation of the crosslinked dG bases at a 90° angle, the AAF-dG fully intercalates into the duplex to stabilize the kinked structure.

Legend

Protein

Chemical

Disease

Primary Citation of related structures