4ZNH image
Entry Detail
PDB ID:
4ZNH
Keywords:
Title:
Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with a 2-Fluoro-substituted OBHS derivative
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2015-05-04
Release Date:
2016-05-04
Method Details:
Experimental Method:
Resolution:
1.93 Å
R-Value Free:
0.25
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Estrogen receptor
Mutations:Y537S
Chain IDs:A, B
Chain Length:259
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Description:Nuclear receptor-interacting peptide
Chain IDs:C, D
Chain Length:13
Number of Molecules:2
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Predictive features of ligand-specific signaling through the estrogen receptor.
Mol.Syst.Biol. 12 864 864 (2016)
PMID: 27107013 DOI: 10.15252/msb.20156701

Abstact

Some estrogen receptor-α (ERα)-targeted breast cancer therapies such as tamoxifen have tissue-selective or cell-specific activities, while others have similar activities in different cell types. To identify biophysical determinants of cell-specific signaling and breast cancer cell proliferation, we synthesized 241 ERα ligands based on 19 chemical scaffolds, and compared ligand response using quantitative bioassays for canonical ERα activities and X-ray crystallography. Ligands that regulate the dynamics and stability of the coactivator-binding site in the C-terminal ligand-binding domain, called activation function-2 (AF-2), showed similar activity profiles in different cell types. Such ligands induced breast cancer cell proliferation in a manner that was predicted by the canonical recruitment of the coactivators NCOA1/2/3 and induction of the GREB1 proliferative gene. For some ligand series, a single inter-atomic distance in the ligand-binding domain predicted their proliferative effects. In contrast, the N-terminal coactivator-binding site, activation function-1 (AF-1), determined cell-specific signaling induced by ligands that used alternate mechanisms to control cell proliferation. Thus, incorporating systems structural analyses with quantitative chemical biology reveals how ligands can achieve distinct allosteric signaling outcomes through ERα.

Legend

Protein

Chemical

Disease

Primary Citation of related structures