4YI5 image
Deposition Date 2015-02-27
Release Date 2015-11-18
Last Version Date 2024-01-10
Entry Detail
PDB ID:
4YI5
Keywords:
Title:
Crystal structure of Gpb in complex with 4b
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.23
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 43 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Glycogen phosphorylase, muscle form
Gene (Uniprot):PYGM
Chain IDs:A
Chain Length:843
Number of Molecules:1
Biological Source:Oryctolagus cuniculus
Primary Citation
Glycogen phosphorylase as a target for type 2 diabetes: synthetic, biochemical, structural and computational evaluation of novel N-acyl-N -( beta-D-glucopyranosyl) urea inhibitors.
Curr Top Med Chem 15 2373 2389 (2015)
PMID: 26088352 DOI: 10.2174/1568026615666150619142253

Abstact

Glycogen phosphorylase (GP), a validated target for the development of anti-hyperglycaemic agents, has been targeted for the design of novel glycopyranosylamine inhibitors. Exploiting the two most potent inhibitors from our previous study of N-acyl-β-D-glucopyranosylamines (Parmenopoulou et al., Bioorg. Med. Chem. 2014, 22, 4810), we have extended the linking group to -NHCONHCO- between the glucose moiety and the aliphatic/aromatic substituent in the GP catalytic site β-cavity. The N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors were synthesized and their efficiency assessed by biochemical methods, revealing inhibition constant values of 4.95 µM and 2.53 µM. Crystal structures of GP in complex with these inhibitors were determined and analyzed, providing data for further structure based design efforts. A novel Linear Response - Molecular Mechanics Coulomb Surface Area (LR-MM-CBSA) method has been developed which relates predicted and experimental binding free energies for a training set of N-acyl-N´-(β-D-glucopyranosyl) urea ligands with a correlation coefficient R(2) of 0.89 and leave-one-out cross-validation (LOO-cv) Q(2) statistic of 0.79. The method has significant applications to direct future lead optimization studies, where ligand entropy loss on binding is revealed as a key factor to be considered. ADMET property predictions revealed that apart from potential permeability issues, the synthesized N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors have drug-like potential without any toxicity warnings.

Legend

Protein

Chemical

Disease

Primary Citation of related structures