4WA0 image
Entry Detail
PDB ID:
4WA0
Keywords:
Title:
The structure of a possible adhesin C-terminal domain from Caldicellulosiruptor kronotskyensis
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2014-08-28
Release Date:
2015-03-04
Method Details:
Experimental Method:
Resolution:
1.70 Å
R-Value Free:
0.19
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:possible adhesin
Chain IDs:A
Chain Length:358
Number of Molecules:1
Biological Source:Caldicellulosiruptor kronotskyensis
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET modified residue
Ligand Molecules
Primary Citation
Discrete and Structurally Unique Proteins (Tapirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose.
J.Biol.Chem. 290 10645 10656 (2015)
PMID: 25720489 DOI: 10.1074/jbc.M115.641480

Abstact

A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tāpirins," origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.

Legend

Protein

Chemical

Disease

Primary Citation of related structures