4ROL image
Deposition Date 2014-10-28
Release Date 2015-05-20
Last Version Date 2024-11-20
Entry Detail
PDB ID:
4ROL
Title:
Deoxyhemoglobin in complex with imidazolylacryloyl derivatives
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
1.70 Å
R-Value Free:
0.20
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Hemoglobin subunit alpha
Gene (Uniprot):HBA1, HBA2
Chain IDs:A, C
Chain Length:141
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:Hemoglobin subunit beta
Gene (Uniprot):HBB
Chain IDs:B, D
Chain Length:146
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Identification of a novel class of covalent modifiers of hemoglobin as potential antisickling agents.
Org.Biomol.Chem. 13 6353 6370 (2015)
PMID: 25974708 DOI: 10.1039/c5ob00367a

Abstact

Aromatic aldehydes and ethacrynic acid (ECA) exhibit antipolymerization properties that are beneficial for sickle cell disease therapy. Based on the ECA pharmacophore and its atomic interaction with hemoglobin, we designed and synthesized several compounds - designated as KAUS (imidazolylacryloyl derivatives) - that we hypothesized would bind covalently to βCys93 of hemoglobin and inhibit sickling. The compounds surprisingly showed weak allosteric and antisickling properties. X-ray studies of hemoglobin in complex with representative KAUS compounds revealed an unanticipated mode of Michael addition between the β-unsaturated carbon and the N-terminal αVal1 nitrogen at the α-cleft of hemoglobin, with no observable interaction with βCys93. Interestingly, the compounds exhibited almost no reactivity with the free amino acids, L-Val, L-His and L-Lys, but showed some reactivity with both glutathione and L-Cys. Our findings provide a molecular level explanation for the compounds biological activities and an important framework for targeted modifications that would yield novel potent antisickling agents.

Legend

Protein

Chemical

Disease

Primary Citation of related structures