4QVQ image
Deposition Date 2014-07-15
Release Date 2015-02-04
Last Version Date 2024-11-06
Entry Detail
PDB ID:
4QVQ
Title:
yCP beta5-M45I mutant in complex with bortezomib
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.60 Å
R-Value Free:
0.21
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit alpha type-2
Gene (Uniprot):PRE8
Mutagens:M45I
Chain IDs:A, O
Chain Length:250
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit alpha type-3
Gene (Uniprot):PRE9
Chain IDs:B, P
Chain Length:196
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit alpha type-4
Gene (Uniprot):PRE6
Chain IDs:C, Q
Chain Length:254
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit alpha type-5
Gene (Uniprot):PUP2
Chain IDs:D, R
Chain Length:260
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit alpha type-6
Gene (Uniprot):PRE5
Chain IDs:E, S
Chain Length:234
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Probable proteasome subunit alpha type-7
Gene (Uniprot):PRE10
Chain IDs:F, T
Chain Length:288
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit alpha type-1
Gene (Uniprot):SCL1
Chain IDs:G, U
Chain Length:252
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit beta type-2
Gene (Uniprot):PUP1
Chain IDs:H, V
Chain Length:232
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit beta type-3
Gene (Uniprot):PUP3
Chain IDs:I, W
Chain Length:205
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit beta type-4
Gene (Uniprot):PRE1
Chain IDs:J, X
Chain Length:198
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit beta type-5
Gene (Uniprot):PRE2
Chain IDs:K, Y
Chain Length:212
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit beta type-6
Gene (Uniprot):PRE7
Chain IDs:L, Z
Chain Length:222
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit beta type-7
Gene (Uniprot):PRE4
Chain IDs:M, AA (auth: a)
Chain Length:250
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Proteasome subunit beta type-1
Gene (Uniprot):PRE3
Chain IDs:N, BA (auth: b)
Chain Length:196
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Primary Citation
Bortezomib-Resistant Mutant Proteasomes: Structural and Biochemical Evaluation with Carfilzomib and ONX 0914.
Structure 23 407 417 (2015)
PMID: 25599643 DOI: 10.1016/j.str.2014.11.019

Abstact

Inhibition of the 20S proteasome by bortezomib (Velcade) constitutes a successfully applied therapy for blood cancer. However, emerging resistance restricts its medicinal use. For example, mutations in the proteolytically active β5-subunit of the proteasome, the main target of inhibitors, were reported to impair drug binding and thus to reduce therapeutic efficacy. Using yeast as a model system, we describe here a systematic evaluation of these mutations by cell growth analysis, proteasome inhibition assays, and X-ray crystallography. The 11 mutants examined display decreased proliferation rates, impaired proteolytic activity, and marked resistance to bortezomib as well as the α',β'-epoxyketone inhibitors carfilzomib (Kyprolis) and ONX 0914, while the second-generation compound carfilzomib was the least affected. In total, 49 proteasome X-ray structures, including structural data on proteasome-carfilzomib complexes, reveal three distinct molecular mechanisms that hamper both drug binding and natural substrate turnover to an extent that is still compatible with cell survival.

Legend

Protein

Chemical

Disease

Primary Citation of related structures