4Q8X image
Deposition Date 2014-04-28
Release Date 2015-03-11
Last Version Date 2023-09-20
Entry Detail
PDB ID:
4Q8X
Keywords:
Title:
Crystal structure of 1-hydroxy-5-(trifluoromethyl)pyridine-2(1H)-thione bound to human carbonic anhydrase II
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.55 Å
R-Value Free:
0.20
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Carbonic anhydrase 2
Gene (Uniprot):CA2
Chain IDs:A
Chain Length:260
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Exploring the influence of the protein environment on metal-binding pharmacophores.
J.Med.Chem. 57 7126 7135 (2014)
PMID: 25116076 DOI: 10.1021/jm500984b

Abstact

The binding of a series of metal-binding pharmacophores (MBPs) related to the ligand 1-hydroxypyridine-2-(1H)-thione (1,2-HOPTO) in the active site of human carbonic anhydrase II (hCAII) has been investigated. The presence and/or position of a single methyl substituent drastically alters inhibitor potency and can result in coordination modes not observed in small-molecule model complexes. It is shown that this unexpected binding mode is the result of a steric clash between the methyl group and a highly ordered water network in the active site that is further stabilized by the formation of a hydrogen bond and favorable hydrophobic contacts. The affinity of MBPs is dependent on a large number of factors including donor atom identity, orientation, electrostatics, and van der Waals interactions. These results suggest that metal coordination by metalloenzyme inhibitors is a malleable interaction and that it is thus more appropriate to consider the metal-binding motif of these inhibitors as a pharmacophore rather than a "chelator". The rational design of inhibitors targeting metalloenzymes will benefit greatly from a deeper understanding of the interplay between the variety of forces governing the binding of MBPs to active site metal ions.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback