4PT2 image
Deposition Date 2014-03-10
Release Date 2014-07-30
Last Version Date 2024-02-28
Entry Detail
PDB ID:
4PT2
Title:
Myxococcus xanthus encapsulin protein (EncA)
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
4.60 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Encapsulin protein
Gene (Uniprot):encA
Chain IDs:A (auth: P), B (auth: A), C (auth: B)
Chain Length:287
Number of Molecules:3
Biological Source:Myxococcus xanthus
Ligand Molecules
Primary Citation
A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress.
Embo J. 33 1896 1911 (2014)
PMID: 25024436 DOI: 10.15252/embj.201488566

Abstact

Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration.

Legend

Protein

Chemical

Disease

Primary Citation of related structures