4PPT image
Deposition Date 2014-02-27
Release Date 2014-09-03
Last Version Date 2024-11-06
Entry Detail
PDB ID:
4PPT
Keywords:
Title:
Engineered Dual Specific VHH Antibody in Complex with a Nickel (II) Ion
Biological Source:
Source Organism:
Lama glama (Taxon ID: 9844)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.50 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Engineered single domain VHH antibody
Chain IDs:A
Chain Length:121
Number of Molecules:1
Biological Source:Lama glama
Primary Citation
Structural basis of an engineered dual-specific antibody: conformational diversity leads to a hypervariable loop metal-binding site.
Protein Eng.Des.Sel. 27 391 397 (2014)
PMID: 25143596 DOI: 10.1093/protein/gzu033

Abstact

To explore dual-specificity in a small protein interface, we previously generated a 'metal switch' anti-RNase A VHH antibody using a combinatorial histidine library approach. While most metal-binding sites in proteins are found within rigid secondary structure, the engineered VHH antibody (VHH(metal)), which contained three new histidine residues, possessed metal-binding residues within the flexible hypervariable loops. Here, crystal structure analysis of the free and bound states of VHH(metal) reveals the structural determinants leading to dual-function. Most notably, CDR1 is observed in two distinct conformations when adopting the metal or RNase A bound states. Furthermore, mutagenesis studies revealed that one of the engineered residues, not located in the metal-binding pocket, contributed indirectly to metal recognition, likely through influencing CDR1 conformation. Despite these changes, VHH(metal) possesses a relatively minor energetic penalty toward binding the original antigen, RNase A (~1 kcal/mol), where the engineered gain-of-function metal-binding residues are observed to possess a mix of favorable and unfavorable contributions towards RNase A recognition. Ultimately, the conformationally distinct metal-switch interface architecture reflects the robust, library-based strategy used to produce VHH(metal). These results also suggest that even small protein interfaces, such as VHH, may be structurally and energetically forgiving in adopting novel function, while maintaining original function.

Legend

Protein

Chemical

Disease

Primary Citation of related structures