4PEQ image
Deposition Date 2014-04-24
Release Date 2014-06-25
Last Version Date 2024-10-09
Entry Detail
PDB ID:
4PEQ
Title:
Structure of bovine ribonuclease inhibitor complexed with bovine ribonuclease I
Biological Source:
Source Organism:
Bos taurus (Taxon ID: 9913)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.21 Å
R-Value Free:
0.22
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Ribonuclease pancreatic
Gene (Uniprot):RNASE1
Chain IDs:A, C
Chain Length:124
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Ribonuclease/angiogenin inhibitor 1
Gene (Uniprot):RNH1
Chain IDs:B, D
Chain Length:456
Number of Molecules:2
Biological Source:Bos taurus
Primary Citation
Functional evolution of ribonuclease inhibitor: insights from birds and reptiles.
J.Mol.Biol. 426 3041 3056 (2014)
PMID: 24941155 DOI: 10.1016/j.jmb.2014.06.007

Abstact

Ribonuclease inhibitor (RI) is a conserved protein of the mammalian cytosol. RI binds with high affinity to diverse secretory ribonucleases (RNases) and inhibits their enzymatic activity. Although secretory RNases are found in all vertebrates, the existence of a non-mammalian RI has been uncertain. Here, we report on the identification and characterization of RI homologs from chicken and anole lizard. These proteins bind to RNases from multiple species but exhibit much greater affinity for their cognate RNases than for mammalian RNases. To reveal the basis for this differential affinity, we determined the crystal structure of mouse, bovine, and chicken RI·RNase complexes to a resolution of 2.20, 2.21, and 1.92Å, respectively. A combination of structural, computational, and bioinformatic analyses enabled the identification of two residues that appear to contribute to the differential affinity for RNases. We also found marked differences in oxidative instability between mammalian and non-mammalian RIs, indicating evolution toward greater oxygen sensitivity in RIs from mammalian species. Taken together, our results illuminate the structural and functional evolution of RI, along with its dynamic role in vertebrate biology.

Legend

Protein

Chemical

Disease

Primary Citation of related structures