4P5J image
Deposition Date 2014-03-17
Release Date 2014-06-04
Last Version Date 2023-12-27
Entry Detail
PDB ID:
4P5J
Keywords:
Title:
Crystal structure of the tRNA-like structure from Turnip Yellow Mosaic Virus (TYMV), a tRNA mimicking RNA
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.99 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polyribonucleotide
Molecule:Turnip yellow mosaic virus mRNA for the coat protein
Chain IDs:A
Chain Length:86
Number of Molecules:1
Biological Source:Turnip yellow mosaic virus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
A23 A A modified residue
Primary Citation
The structural basis of transfer RNA mimicry and conformational plasticity by a viral RNA.
Nature 511 366 369 (2014)
PMID: 24909993 DOI: 10.1038/nature13378

Abstact

RNA is arguably the most functionally diverse biological macromolecule. In some cases a single discrete RNA sequence performs multiple roles, and this can be conferred by a complex three-dimensional structure. Such multifunctionality can also be driven or enhanced by the ability of a given RNA to assume different conformational (and therefore functional) states. Despite its biological importance, a detailed structural understanding of the paradigm of RNA structure-driven multifunctionality is lacking. To address this gap it is useful to study examples from single-stranded positive-sense RNA viruses, a prototype being the tRNA-like structure (TLS) found at the 3' end of the turnip yellow mosaic virus (TYMV). This TLS not only acts like a tRNA to drive aminoacylation of the viral genomic (g)RNA, but also interacts with other structures in the 3' untranslated region of the gRNA, contains the promoter for negative-strand synthesis, and influences several infection-critical processes. TLS RNA can provide a glimpse into the structural basis of RNA multifunctionality and plasticity, but for decades its high-resolution structure has remained elusive. Here we present the crystal structure of the complete TYMV TLS to 2.0 Å resolution. Globally, the RNA adopts a shape that mimics tRNA, but it uses a very different set of intramolecular interactions to achieve this shape. These interactions also allow the TLS to readily switch conformations. In addition, the TLS structure is 'two faced': one face closely mimics tRNA and drives aminoacylation, the other face diverges from tRNA and enables additional functionality. The TLS is thus structured to perform several functions and interact with diverse binding partners, and we demonstrate its ability to specifically bind to ribosomes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures