4ON1 image
Entry Detail
PDB ID:
4ON1
Keywords:
Title:
Crystal Structure of metalloproteinase-II from Bacteroides fragilis
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2014-01-28
Release Date:
2014-04-09
Method Details:
Experimental Method:
Resolution:
2.13 Å
R-Value Free:
0.20
R-Value Work:
0.15
R-Value Observed:
0.16
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Putative metalloprotease II
Mutations:E352A
Chain IDs:A, B
Chain Length:379
Number of Molecules:2
Biological Source:Bacteroides fragilis
Primary Citation
Structural and functional diversity of metalloproteinases encoded by the Bacteroides fragilis pathogenicity island.
Febs J. 281 2487 2502 (2014)
PMID: 24698179 DOI: 10.1111/febs.12804

Abstact

Bacteroides fragilis causes the majority of anaerobic infections in humans. The presence of a pathogenicity island in the genome discriminates pathogenic and commensal B. fragilis strains. The island encodes metalloproteinase II (MPII), a potential virulence protein, and one of three homologous fragilysin isozymes (FRA; also termed B. fragilis toxin or BFT). Here, we report biochemical data on the structural-functional characteristics of the B. fragilis pathogenicity island proteases by reporting the crystal structure of MPII at 2.13 Å resolution, combined with detailed characterization of the cleavage preferences of MPII and FRA3 (as a representative of the FRA isoforms), identified using a high-throughput peptide cleavage assay with 18 583 substrate peptides. We suggest that the evolution of the MPII catalytic domain can be traced to human and archaebacterial proteinases, whereas the prodomain fold is a feature specific to MPII and FRA. We conclude that the catalytic domain of both MPII and FRA3 evolved differently relative to the prodomain, and that the prodomain evolved specifically to fit the B. fragilis pathogenicity. Overall, our data provide insights into the evolution of cleavage specificity and activation mechanisms in the virulent metalloproteinases.

Legend

Protein

Chemical

Disease

Primary Citation of related structures