4MXI image
Deposition Date 2013-09-26
Release Date 2013-10-23
Last Version Date 2023-09-20
Entry Detail
PDB ID:
4MXI
Keywords:
Title:
ClpP Ser98dhA
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 61 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP-dependent Clp protease proteolytic subunit
Gene (Uniprot):clpP
Chain IDs:A, B, C, D, E, F, G
Chain Length:195
Number of Molecules:7
Biological Source:Staphylococcus aureus subsp. aureus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
DHA A SER 2-AMINO-ACRYLIC ACID
Primary Citation
Disruption of Oligomerization and Dehydroalanine Formation as Mechanisms for ClpP Protease Inhibition.
J.Am.Chem.Soc. 136 1360 1366 (2014)
PMID: 24106749 DOI: 10.1021/ja4082793

Abstact

Over 100 protease inhibitors are currently used in the clinics, and most of them use blockage of the active site for their mode of inhibition. Among the protease drug targets are several enzymes for which the correct multimeric assembly is crucial to their activity, such as the proteasome and the HIV protease. Here, we present a novel mechanism of protease inhibition that relies on active-site-directed small molecules that disassemble the protease complex. We show the applicability of this mechanism within the ClpP protease family, whose members are tetradecameric serine proteases and serve as regulators of several cellular processes, including homeostasis and virulence. Compound binding to ClpP in a substoichiometric fashion triggers the formation of completely inactive heptamers. Moreover, we report the selective β-sultam-induced dehydroalanine formation of the active site serine. This reaction proceeds through sulfonylation and subsequent elimination, thereby obliterating the catalytic charge relay system. The identity of the dehydroalanine was confirmed by mass spectrometry and crystallography. Activity-based protein profiling experiments suggest the formation of a dehydroalanine moiety in living S. aureus cells upon β-sultam treatment. Collectively, these findings extend our view on multicomponent protease inhibition that until now has mainly relied on blockage of the active site or occupation of a regulatory allosteric site.

Legend

Protein

Chemical

Disease

Primary Citation of related structures