4M56 image
Deposition Date 2013-08-08
Release Date 2013-10-02
Last Version Date 2024-02-28
Entry Detail
PDB ID:
4M56
Keywords:
Title:
The Structure of Wild-type MalL from Bacillus subtilis
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.24
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Oligo-1,6-glucosidase 1
Gene (Uniprot):malL
Chain IDs:A, B
Chain Length:561
Number of Molecules:2
Biological Source:Bacillus subtilis subsp. subtilis
Primary Citation
Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates.
Acs Chem.Biol. 8 2388 2393 (2013)
PMID: 24015933 DOI: 10.1021/cb4005029

Abstact

The increase in enzymatic rates with temperature up to an optimum temperature (Topt) is widely attributed to classical Arrhenius behavior, with the decrease in enzymatic rates above Topt ascribed to protein denaturation and/or aggregation. This account persists despite many investigators noting that denaturation is insufficient to explain the decline in enzymatic rates above Topt. Here we show that it is the change in heat capacity associated with enzyme catalysis (ΔC(‡)p) and its effect on the temperature dependence of ΔG(‡) that determines the temperature dependence of enzyme activity. Through mutagenesis, we demonstrate that the Topt of an enzyme is correlated with ΔC(‡)p and that changes to ΔC(‡)p are sufficient to change Topt without affecting the catalytic rate. Furthermore, using X-ray crystallography and molecular dynamics simulations we reveal the molecular details underpinning these changes in ΔC(‡)p. The influence of ΔC(‡)p on enzymatic rates has implications for the temperature dependence of biological rates from enzymes to ecosystems.

Legend

Protein

Chemical

Disease

Primary Citation of related structures