4L4J image
Deposition Date 2013-06-07
Release Date 2013-08-28
Last Version Date 2024-11-27
Entry Detail
PDB ID:
4L4J
Keywords:
Title:
Crystal structure of fc-fragment of human IgG2-Sigma antibody
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.92 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Ig gamma-2 chain C region
Gene (Uniprot):IGHG2
Mutagens:V235A, G237A, P238S, H268A, V309L, A330S, P331S
Chain IDs:A, B
Chain Length:221
Number of Molecules:2
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Ligand Molecules
Primary Citation
An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.
Methods 65 114 126 (2014)
PMID: 23872058 DOI: 10.1016/j.ymeth.2013.06.035

Abstact

The Fc variant of IgG2, designated as IgG2σ, was engineered with V234A/G237A /P238S/H268A/V309L/A330S/P331S substitutions to eliminate affinity for Fcγ receptors and C1q complement protein and consequently, immune effector functions. IgG2σ was compared to other previously well-characterized Fc 'muted' variants, including aglycosylated IgG1, IgG2m4 (H268Q/V309L/A330S/P331S, changes to IgG4), and IgG4 ProAlaAla (S228P/L234A/L235A) in its capacity to bind FcγRs and activate various immune-stimulatory responses. In contrast to the previously characterized muted Fc variants, which retain selective FcγR binding and effector functions, IgG2σ shows no detectable binding to the Fcγ receptors in affinity and avidity measurements, nor any detectable antibody-dependent cytotoxicity, phagocytosis, complement activity, or Fc-mediated cytokine release. Moreover, IgG2σ shows minimal immunogenic potential by T-cell epitope analysis. The circulating half-life of IgG2σ in monkeys is extended relative to IgG1 and IgG2, in spite of similar in vitro binding to recombinant FcRn. The three-dimensional structure of the Fc, needed for assessing the basis for the absence of effector function, was compared with that of IgG2 revealing a number of conformational differences near the hinge region of the CH2 domain that result from the amino acid substitutions. Modeling reveals that at least one of the key interactions with FcγRs is disrupted by a conformational change that reorients P329 to a position that prevents it from interacting with conserved W90 and W113 residues of the FcγRs. Inspection of the structure also indicated significant changes to the conformations of D270 and P329 in the CH2 domain that could negatively impact C1q binding. Thus, structural perturbations of the Fc provide a rationale for the loss of function. In toto, these properties of IgG2σ suggest that it is a superior alternative to previously described IgG variants of minimal effector function, for future therapeutic applications of non-immunostimulatory mAb and Fc-fusion platforms.

Legend

Protein

Chemical

Disease

Primary Citation of related structures