4HUK image
Entry Detail
PDB ID:
4HUK
Title:
MATE transporter NorM-NG in complex with TPP and monobody
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2012-11-02
Release Date:
2013-02-06
Method Details:
Experimental Method:
Resolution:
3.59 Å
R-Value Free:
0.34
R-Value Work:
0.30
R-Value Observed:
0.30
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Multidrug efflux protein
Chain IDs:A
Chain Length:459
Number of Molecules:1
Biological Source:Neisseria gonorrhoeae
Polymer Type:polypeptide(L)
Description:Protein B
Chain IDs:B
Chain Length:99
Number of Molecules:1
Biological Source:Escherichia coli
Ligand Molecules
Primary Citation
Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.
Proc.Natl.Acad.Sci.USA 110 2099 2104 (2013)
PMID: 23341609 DOI: 10.1073/pnas.1219901110

Abstact

Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na(+) or H(+) gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na(+)-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs(+) (a Na(+) congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation-π interaction in the Na(+)-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na(+)-induced drug export. Based on our structural and functional analyses, we suggest that Na(+) triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport.

Legend

Protein

Chemical

Disease

Primary Citation of related structures