4HKC image
Deposition Date 2012-10-15
Release Date 2013-06-26
Last Version Date 2024-10-30
Entry Detail
PDB ID:
4HKC
Title:
14-3-3-zeta in complex with S1011 phosphorylated integrin alpha-4 peptide
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.23
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:14-3-3 protein zeta/delta
Gene (Uniprot):YWHAZ
Chain IDs:A
Chain Length:250
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:alpha-4 integrin derived phosphorylated peptide
Gene (Uniprot):ITGA4
Chain IDs:B
Chain Length:30
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
SEP B SER PHOSPHOSERINE
Ligand Molecules
Primary Citation
Characterization of 14-3-3-zeta Interactions with integrin tails
J.Mol.Biol. 425 3060 3072 (2013)
PMID: 23763993 DOI: 10.1016/j.jmb.2013.05.024

Abstact

Integrins are a family of heterodimeric (α+β) adhesion receptors that play key roles in many cellular processes. Integrins are unusual in that their functions can be modulated from both outside and inside the cell. Inside-out signaling is mediated by binding adaptor proteins to the flexible cytoplasmic tails of the α- and β-integrin subunits. Talin is one well-known intracellular activator, but various other adaptors bind to integrin tails, including 14-3-3-ζ, a member of the 14-3-3 family of dimeric proteins that have a preference for binding phosphorylated sequence motifs. Phosphorylation of a threonine in the β2 integrin tail has been shown to modulate β2/14-3-3-ζ interactions, and recently, the α4 integrin tail was reported to bind to 14-3-3-ζ and associate with paxillin in a ternary complex that is regulated by serine phosphorylation. Here, we use a range of biophysical techniques to characterize interactions between 14-3-3-ζ and the cytoplasmic tails of α4, β1, β2 and β3 integrins. The X-ray structure of the 14-3-3-ζ/α4 complex indicates a canonical binding mode for the α4 phospho-peptide, but unexpected features are also observed: residues outside the consensus 14-3-3-ζ binding motif are shown to be essential for an efficient interaction; in contrast, a short β2 phospho-peptide is sufficient for high-affinity binding to 14-3-3-ζ. In addition, we report novel 14-3-3-ζ/integrin tail interactions that are independent of phosphorylation. Of the integrin tails studied, the strongest interaction with 14-3-3-ζ is observed for the β1A variant. In summary, new insights about 14-3-3-ζ/integrin tail interactions that have implications for the role of these molecular associations in cells are described.

Legend

Protein

Chemical

Disease

Primary Citation of related structures