4HGC image
Deposition Date 2012-10-08
Release Date 2013-10-09
Last Version Date 2023-11-15
Entry Detail
PDB ID:
4HGC
Title:
Crystal structure of bovine trypsin complexed with sfti-1 analog containing a peptoid residue at position p1
Biological Source:
Source Organism:
Helianthus annuus (Taxon ID: 4232)
Bos taurus (Taxon ID: 9913)
Method Details:
Experimental Method:
Resolution:
1.29 Å
R-Value Free:
0.15
R-Value Work:
0.12
R-Value Observed:
0.12
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Cationic trypsin
Gene (Uniprot):PRSS1
Chain IDs:A
Chain Length:223
Number of Molecules:1
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Trypsin inhibitor 1
Gene (Uniprot):sfti1
Chain IDs:B (auth: I)
Chain Length:14
Number of Molecules:1
Biological Source:Helianthus annuus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
NLY B GLY N-(4-AMINOBUTYL)GLYCINE
Peptide-like Molecules
PRD_001025
Primary Citation
Structure of a proteolytically resistant analogue of (NLys)(5)SFTI-1 in complex with trypsin: evidence for the direct participation of the Ser214 carbonyl group in serine protease-mediated proteolysis.
Acta Crystallogr.,Sect.D 70 668 675 (2014)
PMID: 24598736 DOI: 10.1107/S1399004713032252

Abstact

Peptide-peptoid hybrids are found to be potent inhibitors of serine proteases. These engineered peptidomimetics benefit from both types of units of the biopolymeric structure: the natural inhibitor part serves as a good binding template, while the P1-positioned peptoid component provides complete resistance towards proteolysis. In this report, the mechanism of proteolytic resistance of a P1 peptoid-containing analogue is postulated based on the crystal structure of the (NLys)(5)-modified sunflower trypsin inhibitor SFTI-1 in complex with bovine trypsin solved at 1.29 Å resolution. The structural differences between the (NLys)(5)SFTI-1-trypsin complex and the native SFTI-1-trypsin complex are surprisingly small and reveal the key role of the carbonyl group of the Ser214 residue of the enzyme, which is crucial for binding of the inhibitor and plays a crucial role in proteolysis mediated by serine proteases. The incorporated NLys5 peptoid residue prevents Ser214 from forming a hydrogen bond to the P1 residue, and in turn Gln192 does not form a hydrogen bond to the carbonyl group of the P2 residue. It also increases the distance between the Ser214 carbonyl group and the Ser195 residue, thus preventing proteolysis. The hybrid inhibitor structure reported here provides insight into protein-protein interaction, which can be efficiently and selectively probed with the use of peptoids incorporated within endogenous peptide ligands.

Legend

Protein

Chemical

Disease

Primary Citation of related structures