4G8Y image
Deposition Date 2012-07-23
Release Date 2012-11-21
Last Version Date 2024-11-06
Entry Detail
PDB ID:
4G8Y
Title:
Crystal structure of Ribonuclease A in complex with 5b
Biological Source:
Source Organism:
Bos taurus (Taxon ID: 9913)
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.25
R-Value Work:
0.19
R-Value Observed:
0.20
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Ribonuclease pancreatic
Gene (Uniprot):RNASE1
Chain IDs:A, B
Chain Length:124
Number of Molecules:2
Biological Source:Bos taurus
Ligand Molecules
Primary Citation
Triazole pyrimidine nucleosides as inhibitors of Ribonuclease A. Synthesis, biochemical, and structural evaluation.
Bioorg.Med.Chem. 20 7184 7193 (2012)
PMID: 23122937 DOI: 10.1016/j.bmc.2012.09.067

Abstact

Five ribofuranosyl pyrimidine nucleosides and their corresponding 1,2,3-triazole derivatives have been synthesized and characterized. Their inhibitory action to Ribonuclease A has been studied by biochemical analysis and X-ray crystallography. These compounds are potent competitive inhibitors of RNase A with low μM inhibition constant (K(i)) values with the ones having a triazolo linker being more potent than the ones without. The most potent of these is 1-[(β-D-ribofuranosyl)-1,2,3-triazol-4-yl]uracil being with K(i) = 1.6 μM. The high resolution X-ray crystal structures of the RNase A in complex with three most potent inhibitors of these inhibitors have shown that they bind at the enzyme catalytic cleft with the pyrimidine nucleobase at the B(1) subsite while the triazole moiety binds at the main subsite P(1), where P-O5' bond cleavage occurs, and the ribose at the interface between subsites P(1) and P(0) exploiting interactions with residues from both subsites. The effect of a susbsituent group at the 5-pyrimidine position at the inhibitory potency has been also examined and results show that any addition at this position leads to a less efficient inhibitor. Comparative structural analysis of these RNase A complexes with other similar RNase A-ligand complexes reveals that the triazole moiety interactions with the protein form the structural basis of their increased potency. The insertion of a triazole linker between the pyrimidine base and the ribose forms the starting point for further improvement of these inhibitors in the quest for potent ribonucleolytic inhibitors with pharmaceutical potential.

Legend

Protein

Chemical

Disease

Primary Citation of related structures