4FVV image
Deposition Date 2012-06-29
Release Date 2012-10-24
Last Version Date 2023-09-13
Entry Detail
PDB ID:
4FVV
Keywords:
Title:
Crystal structure of HCR/D-Sa-GBL1/C
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
R-Value Free:
0.26
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Neurotoxin
Gene (Uniprot):nt
Mutations:loop of KLGDDYWFN(1246-1254) mutated to RLGGDWYR
Chain IDs:A, B
Chain Length:423
Number of Molecules:2
Biological Source:Clostridium botulinum
Primary Citation
Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry.
J.Biol.Chem. 287 40806 40816 (2012)
PMID: 23027864 DOI: 10.1074/jbc.M112.404244

Abstact

BACKGROUND How botulinum neurotoxin serotype C (BoNT/C) enters neurons is unclear. RESULTS BoNT/C utilizes dual gangliosides as host cell receptors. CONCLUSION BoNT/C accesses gangliosides on the plasma membrane. SIGNIFICANCE Plasma membrane accessibility of the dual ganglioside receptors suggests synaptic vesicle exocytosis may not be necessary to expose BoNT/C receptors. Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A-G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.

Legend

Protein

Chemical

Disease

Primary Citation of related structures