4EM9 image
Entry Detail
PDB ID:
4EM9
Keywords:
Title:
Human PPAR gamma in complex with nonanoic acids
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2012-04-11
Release Date:
2013-03-06
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Peroxisome proliferator-activated receptor gamma
Chain IDs:A, B
Chain Length:275
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) Gamma activators and pan-PPAR partial agonists
Plos One 7 e36297 e36297 (2012)
PMID: 22649490 DOI: 10.1371/journal.pone.0036297

Abstact

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.

Legend

Protein

Chemical

Disease

Primary Citation of related structures