4DU7 image
Deposition Date 2012-02-21
Release Date 2012-07-11
Last Version Date 2023-09-13
Entry Detail
PDB ID:
4DU7
Keywords:
Title:
Crystal structure of Staphylococcus epidermidis mevalonate diphosphate decarboxylase complexed with substrate mevalonate diphosphate
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.23
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Mevalonate diphosphate decarboxylase
Gene (Uniprot):mvaD
Chain IDs:A, B
Chain Length:332
Number of Molecules:2
Biological Source:Staphylococcus epidermidis
Primary Citation
Structural basis for nucleotide binding and reaction catalysis in mevalonate diphosphate decarboxylase.
Biochemistry 51 5611 5621 (2012)
PMID: 22734632 DOI: 10.1021/bi300591x

Abstact

Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg(2+)-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k(cat) decreased 10(3)- and 10(5)-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp(283) functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ("P-loop") provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

Legend

Protein

Chemical

Disease

Primary Citation of related structures