4D3G image
Entry Detail
PDB ID:
4D3G
Title:
Structure of PstA
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2014-10-22
Release Date:
2014-12-24
Method Details:
Experimental Method:
Resolution:
3.00 Å
R-Value Free:
0.29
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
P 3 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:PSTA
Chain IDs:A
Chain Length:128
Number of Molecules:1
Biological Source:STAPHYLOCOCCUS AUREUS
Ligand Molecules
Primary Citation
Complex Structure and Biochemical Characterization of the Staphylococcus Aureus Cyclic Di-AMP Binding Protein Psta, the Founding Member of a New Signal Transduction Protein Family
J.Biol.Chem. 290 2888 ? (2015)
PMID: 25505271 DOI: 10.1074/JBC.M114.621789

Abstact

Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein.

Legend

Protein

Chemical

Disease

Primary Citation of related structures