4CNK image
Deposition Date 2014-01-23
Release Date 2014-10-15
Last Version Date 2023-12-20
Entry Detail
PDB ID:
4CNK
Keywords:
Title:
L-Aminoacetone oxidase from Streptococcus oligofermentans belongs to a new 3-domain family of bacterial flavoproteins
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.21
R-Value Work:
0.16
R-Value Observed:
0.17
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:L-AMINO ACID OXIDASE
Gene (Uniprot):aao(So)
Chain IDs:A, B
Chain Length:391
Number of Molecules:2
Biological Source:STREPTOCOCCUS OLIGOFERMENTANS
Primary Citation
Aminoacetone Oxidase from Streptococcus Oligofermentas Belongs to a New Three-Domain Family of Bacterial Flavoproteins.
Biochem.J. 464 387 ? (2014)
PMID: 25269103 DOI: 10.1042/BJ20140972

Abstact

The aaoSo gene from Streptococcus oligofermentans encodes a 43 kDa flavoprotein, aminoacetone oxidase (SoAAO), which was reported to possess a low catalytic activity against several different L-amino acids; accordingly, it was classified as an L-amino acid oxidase. Subsequently, SoAAO was demonstrated to oxidize aminoacetone (a pro-oxidant metabolite), with an activity ~25-fold higher than the activity displayed on L-lysine, thus lending support to the assumption of aminoacetone as the preferred substrate. In the present study, we have characterized the SoAAO structure-function relationship. SoAAO is an FAD-containing enzyme that does not possess the classical properties of the oxidase/dehydrogenase class of flavoproteins (i.e. no flavin semiquinone formation is observed during anaerobic photoreduction as well as no reaction with sulfite) and does not show a true L-amino acid oxidase activity. From a structural point of view, SoAAO belongs to a novel protein family composed of three domains: an α/β domain corresponding to the FAD-binding domain, a β-domain partially modulating accessibility to the coenzyme, and an additional α-domain. Analysis of the reaction products of SoAAO on aminoacetone showed 2,5-dimethylpyrazine as the main product; we propose that condensation of two aminoacetone molecules yields 3,6-dimethyl-2,5-dihydropyrazine that is subsequently oxidized to 2,5-dimethylpyrazine. The ability of SoAAO to bind two molecules of the substrate analogue O-methylglycine ligand is thought to facilitate the condensation reaction. A specialized role for SoAAO in the microbial defence mechanism related to aminoacetone catabolism through a pathway yielding dimethylpyrazine derivatives instead of methylglyoxal can be proposed.

Legend

Protein

Chemical

Disease

Primary Citation of related structures