4CA7 image
Deposition Date 2013-10-07
Release Date 2013-12-11
Last Version Date 2024-11-13
Entry Detail
PDB ID:
4CA7
Keywords:
Title:
Drosophila Angiotensin converting enzyme (AnCE) in complex with a phosphinic tripeptide FI
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.82 Å
R-Value Free:
0.19
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
H 3
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:ANGIOTENSIN-CONVERTING ENZYME
Gene (Uniprot):Ance
Chain IDs:A
Chain Length:598
Number of Molecules:1
Biological Source:DROSOPHILA MELANOGASTER
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Crystal Structures of Highly Specific Phosphinic Tripeptide Enantiomers in Complex with the Angiotensin-I Converting Enzyme.
FEBS J. 281 943 ? (2014)
PMID: 24289879 DOI: 10.1111/FEBS.12660

Abstact

Human somatic angiotensin-I converting enzyme (ACE) is a zinc-dependent dipeptidyl carboxypeptidase and a central component of the renin angiotensin aldosterone system (RAAS). Its involvement in the modulation of physiological actions of peptide hormones has positioned ACE as an important therapeutic target for the treatment of hypertension and cardiovascular disorders. Here, we report the crystal structures of the two catalytic domains of human ACE (N- and C-) in complex with FI, the S enantiomer of the phosphinic ACE/ECE-1 (endothelin converting enzyme) dual inhibitor FII, to a resolution of 1.91 and 1.85 Å, respectively. In addition, we have determined the structure of AnCE (an ACE homologue from Drosophila melanogaster) in complex with both isomers. The inhibitor FI (S configuration) can adapt to the active site of ACE catalytic domains and shows key differences in its binding mechanism mostly through the reorientation of the isoxazole phenyl side group at the P₁' position compared with FII (R configuration). Differences in binding are also observed between FI and FII in complex with AnCE. Thus, the new structures of the ACE-inhibitor complexes presented here provide useful information for further exploration of ACE inhibitor pharmacophores involving phosphinic peptides and illustrate the role of chirality in enhancing drug specificity.

Legend

Protein

Chemical

Disease

Primary Citation of related structures