4C2A image
Deposition Date 2013-08-16
Release Date 2014-01-08
Last Version Date 2024-10-23
Entry Detail
PDB ID:
4C2A
Keywords:
Title:
Crystal Structure of High-Affinity von Willebrand Factor A1 domain with R1306Q and I1309V Mutations in Complex with High Affinity GPIb alpha
Biological Source:
Source Organism:
HOMO SAPIENS (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.08 Å
R-Value Free:
0.18
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 61
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:VON WILLEBRAND FACTOR
Gene (Uniprot):VWF
Mutations:YES
Chain IDs:A
Chain Length:215
Number of Molecules:1
Biological Source:HOMO SAPIENS
Polymer Type:polypeptide(L)
Molecule:PLATELET GLYCOPROTEIN IB ALPHA CHAIN
Gene (Uniprot):GP1BA
Mutations:YES
Chain IDs:B
Chain Length:291
Number of Molecules:1
Biological Source:HOMO SAPIENS
Primary Citation
Towards the Structural Basis of Regulation of Von Willebrand Factor Binding to Glycoprotein Ib
J.Biol.Chem. 289 5565 ? (2014)
PMID: 24391089 DOI: 10.1074/JBC.M113.511220

Abstact

Activation by elongational flow of von Willebrand factor (VWF) is critical for primary hemostasis. Mutations causing type 2B von Willebrand disease (VWD), platelet-type VWD (PT-VWD), and tensile force each increase affinity of the VWF A1 domain and platelet glycoprotein Ibα (GPIbα) for one another; however, the structural basis for these observations remains elusive. Directed evolution was used to discover a further gain-of-function mutation in A1 that shifts the long range disulfide bond by one residue. We solved multiple crystal structures of this mutant A1 and A1 containing two VWD mutations complexed with GPIbα containing two PT-VWD mutations. We observed a gained interaction between A1 and the central leucine-rich repeats (LRRs) of GPIbα, previously shown to be important at high shear stress, and verified its importance mutationally. These findings suggest that structural changes, including central GPIbα LRR-A1 contact, contribute to VWF affinity regulation. Among the mutant complexes, variation in contacts and poor complementarity between the GPIbα β-finger and the region of A1 harboring VWD mutations lead us to hypothesize that the structures are on a pathway to, but have not yet reached, a force-induced super high affinity state.

Legend

Protein

Chemical

Disease

Primary Citation of related structures