4BU4 image
Entry Detail
PDB ID:
4BU4
Keywords:
Title:
RIBONUCLEASE T1 COMPLEX WITH 2'GMP
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
1998-09-14
Release Date:
1998-09-23
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.25
R-Value Work:
0.2
R-Value Observed:
0.2
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:PROTEIN (RIBONUCLEASE T1)
Chain IDs:A
Chain Length:104
Number of Molecules:1
Biological Source:Aspergillus oryzae
Primary Citation
Conserved water molecules in a large family of microbial ribonucleases.
Proteins 36 117 134 (1999)
PMID: 10373011 DOI: 10.1002/(SICI)1097-0134(19990701)36:1<117::AID-PROT10>3.0.CO;2-H

Abstact

We systematically analyzed the crystallographically determined water molecules of all known structures of RNase T1 and compared them to the ordered solvent in a large number of related microbial nucleases. To assess the crystallographers' impact on the interpretation of the solvent structure, we independently refined five validation structures from diffraction data derived from five isomorphous crystals of RNase T1. We also compared the positions of water molecules found in 11 published isomorphous RNase T1 inhibitor complexes. These data suggest that the positions of most of the waters located on the surface of a protein and that are well-determined in the experimental electron density maps are determined primarily by crystal packing forces. Water molecules with less well-defined electron density are in general unique to one or a small number of crystal structures. Only a small number of the well-defined waters are found to be independent of the crystal environment. These waters have a low accessible surface area and B-factor, and tend to be conserved in the crystal structures of a number of evolutionary related ribonucleases as well. A single water molecule is found conserved in all known microbial ribonucleases.

Legend

Protein

Chemical

Disease

Primary Citation of related structures