3uqb image
Deposition Date 2011-11-19
Release Date 2011-11-30
Last Version Date 2023-09-13
Entry Detail
PDB ID:
3UQB
Title:
Crystal structure of a SMT Fusion PEPTIDYL-PROLYL CIS-TRANS ISOMERASE with surface mutation D44G from Burkholderia pseudomallei complexed with FK506
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.22
R-Value Work:
0.16
R-Value Observed:
0.17
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Ubiquitin-like protein SMT3, Peptidyl-prolyl cis-trans isomerase
Gene (Uniprot):SMT3, BURPS1710b_A0907
Mutations:D44G
Chain IDs:A
Chain Length:209
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae, Burkholderia pseudomallei
Ligand Molecules
Primary Citation
A structural biology approach enables the development of antimicrobials targeting bacterial immunophilins.
Antimicrob.Agents Chemother. 58 1458 1467 (2014)
PMID: 24366729 DOI: 10.1128/AAC.01875-13

Abstact

Macrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold. This scaffold possesses inhibitory potency for BpML1 without the immunosuppressive components of related macrocyclic agents. Biophysical characterization of a compound series with this scaffold allowed binding site specificity in solution and potency determinations for rank ordering the set. The best compounds in this series possessed a low-micromolar affinity for BpML1, bound at the site of enzymatic activity, and inhibited a panel of homologous Mip proteins from other pathogenic bacteria, without demonstrating toxicity in human macrophages. Importantly, the in vitro activity of BpML1 was reduced by these compounds, leading to decreased macrophage infectivity and intracellular growth of Burkholderia pseudomallei. These compounds offer the potential for activity against a new class of antimicrobial targets and present the utility of a structure-based approach for novel antimicrobial drug discovery.

Legend

Protein

Chemical

Disease

Primary Citation of related structures